Useful physics/math references

Trig Identities (top)

sin(2θ)=2sin(θ)cos(θ)

cos(2θ)=cos2(θ)sin2(θ)=2cos2(θ)1=12sin2(θ)

tan(2θ)=2tan(θ)1tan2(θ)

sin2(θ)+cos2(θ)=1

tan2(θ)+1=sec2(θ)

cot2(θ)+1=csc2(θ)

sin(x)=i2(eixeix)

cos(x)=12(eix+eix)

sin2(x)=14(e2ix+e2ix)+12

cos2(x)=14(e2ix+e2ix)+12

Hyperbolic Trig Identities (top)

sinh(x)=ex+ex2

cosh(x)=exex2

cosh(x)sinh(x)=1

Commutator Identities (top)

[A,B]=ABBA

[A,B]=[B,A]

[A,B+C]=[A,B]+[A,C]

[A,BC]=[A,B]C+B[A,C]

[AB,C]=[A,C]B+A[B,C]

Poisson Brackets (top)

{F,G}=Σi(FqiGpiFpiGqi)

{F,G}={G,F}

{aF+bG,H}=a{F,H}+b{G,H}

{FG,H}=F[G,H]+[F,H]G

{qi,qj}=0;pi,pj=0;qi,pj=δij

Determinant Identities (top)

Levi-Cevita Symbol (top)

ϵijk=1 if ijk=123,231,312;1 if ijk=321,213,132

a×b=ϵijkajbk

Li=ϵijkxjpk

ϵijkϵilm=δjlδkmδjmδkl

Coordinate Transformations (top)

Spherical:

x=rsin(θ)cos(ϕ)

y=rsin(θ)sin(ϕ)

z=rcos(θ)

Lagrangian:

x˙2+y˙2+z˙2=r˙2+r2θ˙2+r2sin2(θ)ϕ˙2

Taylor Expansion (top)

f(x=a)=f(a)+f(a)1!(xa)+f(a)2!(xa)2+f(a)3!(xa)3+...

sin(x)=xx33!+x55!x77!+...

cos(x)=1x22!+x44!x66!+...

sinh(x)=x+x33!+x55!+x77!+...

cosh(x)=1+x22!+x44!+x66!+...

Approximations (top)

1+x1+x2x28...

eix1+ixx22!ix33!+x44!+...

sin(x)x;cos(x)1x22;tan(x)x

Complex numbers, conjugates, hermitian... (top)

(a+bi)=(abi)

Pauli Matrices (top)

Sx=2[0110]

Sy=2[0ii0]

Sz=2[1001]

[Si,Sj]=iϵijkSk

Si,Sj=22δij

Matrix Exponentials (top)

exp(XT)=exp(X)T

exp(X)=expX

Jacobi's Formula: det(eA)=etr(A)

Distribution

Gaussian distribution

Poisson distribution

Boltzmann Formula

Different pictures

Interaction picture transformation, for a given H, you would get

U(t)=eiHt;a(t)=U(t)aU(t))

Heisenberg picture transformation:

daIdt=i[HI,aI]

Baker-Campbell-Hausdoff Formula (top)

eXeY=eZ,whereZ=X+Y+12[X,Y]+112[X,[X,Y]]112[Y,[X,Y]]+...

Baker Hasudorff Lemma:

eGAeG=A+[G,A]+12![G,[G,A]]+13![G,[G,[G,A]]]+...

Zassenhaus Formula

eA+B=eAeBe12[A,B]

Quantum Harmonic Oscillator (top)

En=(n+12)ω

H=p22m+12mω2x2

a|n=n|n1;a|n=n+1|n+1

[a,a]=1

a=12(xxzp+ippzp)

xzp=2mω,pzp=2mω

x=2mω(a+a);p=imω2(aa)

[X,Y]=i2

Coherent states (top)

D(α)=eαaαa

D(α)|0=|α

D(α)aD(α)=a+α

[a,D(α)]=Dα

a|α=α|α

Particle in a Box

V=0,0x

En=n2π222mL2

ψn=2Lsin(nπxL)

Spherical Harmonics (Central Potentials) (top)

Y00=12π

Y11=38πeiϕsin(θ)

Y10=123πcos(θ)

Y11=38πeiϕsin(θ)

Y22=14152πe2iϕsin2(θ)

Y21=12152πeiϕsin(θ)cos(θ)

Y20=145π(3cos2(θ)1)

Y21=12152πeiϕsin(θ)cos(θ)

Y22=14152πe2iϕsin2(θ)

Angular Momentum (top)

L2|l,m=l(l+1)|l,m

Lz|l,m=m|l,m

L+|l,m=l(l+1)+m(m+1)|l,m+1

L|l,m=l(l+1)+m(m1)|l,m1

Lx=12(L++L);Ly=12i(L+L)

Spin Additions (top)

Wigner-Eckert Theorem (top)

Perturbation Theory (top)

Non-degenerate perturbations: H=H(0)+λV

First order:

ΔEn(1)=λn|V|n

Second order:

ΔEn(2)=λΣin|i|V|n|2En(0)Ei(0)

Degenerate perturbations:

Wij=i|V|j

Solve for eigenvalues of W to find the lifted degeneracies for energy and eigenvectors for new "good" states.

Hamilton's Equations (top)

Hqi=p˙i

Hpi=q˙i

More advanced qubit formula references!

Host not accessible